I can haz dependencies?

I hate IoC containers. Spring? Evil. Guice? The devil’s own work. Why? Because it leads to such slack, lazy, thoughtless programming.

Why the hate?

Ok, perhaps I better explain myself a bit. IoC is a great idea. What annoys me, is the way IoC frameworks end up getting used by normal people. I’ve ranted previously about how IoC containers lead us to implement anaemic domain models. The trouble is, once you have a hammer, everything starts to look like a nail. Especially those pesky fingers. Once you have a dependency injection framework, everything starts to look like a dependency that needs to be injected. Need to implement some business logic? First create a new class, test drive it, then make it injectable, inject it into the class where the calling code needs it, test driving it natch, then bingo – you just hit yourself on the finger.

Now I’ve got two classes, basically closely coupled, but the IoC container hides that fact from me. I see a nice, clean interface being injected in. Aren’t I a good little OO developer? No, you’re stupid and you’re lazy.

Before you know it, your class has a dozen or more dependencies, each of which have a dozen dependencies, each of which have a dozen dependencies, each of which… you get the picture. You’ve managed to build a rats nest of a dependency graph, little by little. What you’ve TDD’d isn’t a design. The technical name for it is The Big Ball of Mud.

An Alternative

Instead, I think dependency injection works best at application seams, at architectural boundaries. Say, for example, you’re building a web app. You’ve created a TradeEntryController that allows users to, well, enter trades. The TradeEntryController naturally has loads of dependencies on the rest of the system. It needs to fetch valid assets to invest in and prices, it needs to know what your balance is so you can’t buy more shares than money in the bank etc etc. A perfect example where life without an IoC container could become really cumbersome.

But, I don’t think you need one. I think what your controller needs is a few, specific dependencies – that define the architectural boundary the controller lives within. Above the controller is a HTTP request, a session and all that blah blah. Within it, is business logic. Below it is the database. So, the dependencies we inject should represent only the architectural context in which the controller operates. For the most part, this will be common to all my controllers – not just trade entry. Controllers for managing balances, lists of assets, user accounts – these all depend on knowing stuff about their session, and to be able to talk to the next layer down: the database (or in an n-tier setup, perhaps some web services).

So, why not just inject those dependencies?

public class TradeEntryController {
    public void setSessionManager(ISessionManager sessionManager) { ... }
    public void setTradeDatabase(ITradeDatabase tradeDatabase) { ... }
    public void setAccountDatabase(IAccountDatabase accountDatabase) { ... }
    public void setAssetDatabase(IAssetDatabase assetDatabase) { ... }

Then in my controller, I can fetch user information from the SessionManager; I can get the list of assets from the AssetDatabase; I can check the user’s balance via the AccountDatabase; and I can record the trade via the TradeDatabase. So far, so much the same as a normal IoC container.

So what’s different?

Rather than manage these dependencies via an IoC container. I think you should push them in manually. Yes, I’m suggesting you write your own dead simple dependency injection framework. What? Am I mad? Quite probably, but bear with me.

public interface ICanHazTradeDatabase {
    void setTradeDatabase(ITradeDatabase tradeDatabase);

public class TradeEntryController
    implements ICanHazTradeDatabase, ICanHazAssetDatabase...

public class ControllerFactory {
    public Controller createController(Class clazz) {
        Controller c = clazz.newInstance();
        if (c instanceof ICanHazTradeDatabase)
            ((ICanHazTradeDatabase) c).setTradeDatabase(tradeDatabase);
        if (c instanceof ICanHazAssetDatabase)
            ((ICanHazAssetDatabase) c).setAssetDatabase(assetDatabase);
        if ...

        return c;

The exact mechanics of ControllerFactory of course depend on your MVC framework, but hopefully the idea is clear: when we instantiate a controller, we check it against a known set of interfaces and push in very specific dependencies. Is it pretty? Not really. Is it easy to write? Of course. Does it push dependencies into your controller? Well, yes. Where do they come from? Well, that’s an exercise for the reader. But I’m sure you can find a way to make ControllerFactory a singleton and instantiate all your dependencies in one place.

The Point

What, exactly, is the point of all this? Well, as a developer writing a controller – I can get easy access to all the dependencies that represent the architectural context I’m running within. The databases, services, message brokers, email server, blah blah blah that the application as a whole depends on. They’re right there – I just add the interface, one method and bang – ICanHazCheeseburger.

More interesting, is what I can’t do. I can’t decide that my TradeEntryController needs a TradePricingCalculator and inject that as a dependency. Well, I could, but I’d be making TradePricingCalculator available everywhere, and I’ve got a little more work to do than I would if I was using plain old Spring or Guice – I’ve an interface to create, a couple of lines to add to some scarily named GlobalControllerFactory. Why is this important? It adds some friction. It makes something bad hard to do. I’m forced instead to think about creating a TradePrices object and adding some functionality to it. I’m forced to have a rich domain, because I can’t just move all my functionality off into a TradePriceCalculatorVisitorFactoryManagerBuilder.

The choices we make and the technologies we choose make some things easy and other things hard. We need to think carefully about whether the things we make easy should be easy. It’s always possible to do the right thing, but sometimes we need to make it easier than doing the wrong thing.

Reading code

Writing good code is all about making it fit for human consumption. Any idiot can write code a computer can understand, it takes care to write code another human can understand. But what does it mean to make code easy to understand? Programming is a literate task – writing well requires experience of reading code and in particular reading well written code. But how do we read code? Do we start at the beginning, read line by line until the end? Hardly.

Writing Code

Let me start by asking a different question: how do you write code? You probably write a test, write a small amount of code to make the test pass, then refactor to improve the readability, design etc of your code. Little by little the functionality accumulates; little by little the design emerges from a sequence of decisions and refactoring steps. TDD is fundamentally a design activity. Although you may have an idea of what your design will look like, the actual design will emerge from a sequence of small, interdependent activities.

Reading Code

Now six months later I’m reading this same code. What do I do? Well, I might start by reading the tests – well written tests should help me understand the intent of the code in question and, if they are acceptance tests, tell me what the customer thinks is important. In practice, I find this a painful way of figuring out the important things about a system. If TDD has been followed religiously you’ll have approximately 3.6 billion tests, grouped in a number of different ways making it difficult to keep enough context in my head at once to make any sense of the system.

Instead, I probably have something specific I’m trying to do. I have a change request or a bug to track down. So I probably dive in and make some guesses about where to start. I can’t remember the code so it’s a needle in a haystack. I probably miss and have to wend my way through the code trying to figure out how it fits together. I need to get some kind of big picture – at least for the part of the code I care about, as soon as I work out what that means.

Inferring Design

What I’m trying to figure out is the design of the software. How do these 200 classes relate to each other? What are the bigger patterns that will help me figure out where I need to look. Now, if I had documentation, I could look at that. But 1. it’s probably out of date or missing 2. even if it’s there, I wouldn’t trust it anyway.

So instead I find myself scribbling in a notebook – drawing class diagrams and other doodles with boxes, arrows and lines going all over. But how do I infer the design? I’m trying to understand how some parts of the system interact with each other. I look for references to interesting methods, chasing up the call stack to see what’s interesting. I find interesting classes involved along the way and I click through into interesting method invocations to see if anything fun’s happening. All the time I’m bouncing up and down call hierarchies trying to fit the system together.

As my notes start to coalesce I’ve got some idea about the key classes I care about and their roles in the system – I might find one or two key classes and scan through the whole thing, to see what other responsibilities it has. All the time following interesting method calls and looking for references.

The problem

Reading code is frankly nothing like writing code. But if writing great code means writing code that is easy to read, it’s a damn shame that the task of writing is so fundamentally different from the task of writing. It’s not as if after I’ve written a class I can pretend to have forgotten how it works and try and infer it. The best I can do is make sure that the code itself looks superficially clean. Is the style right? Is it formatted neatly? Insanely superficial stuff that frankly won’t make any difference in 6 months when I’m cursing the idiot that decided 16 levels of method calls with similar names was a sensible design approach (me).

The solution

On a superficial level I wish we could stop dealing with code as text and instead work on the syntax tree, with automated formatting following my preferences – not yours. Then we can all have our own idiosyncratic way of having code presented without having to argue for the billionth time whether spaces are preferable to tabs (of course they are) or whether curlies should be on a new line (of course not, heathen!).

The craftsmanship ethic of writing clean, well factored code is a good step. It doesn’t tackle the fundamental problem that reading code is different from writing it – but reminds us to address some of the symptoms: a comment is a whole new method just dying to be extracted. A 100 hundred line method will be at least twice as easy to understand refactored to two 50 line methods. Make things clear and simple and maybe the code will be easy to understand. Of course, I can still write a clear and simple mess.

It’d be nice if our IDEs were less damned text based. Maybe then we could have IDEs that give us a better, visual language to describe relationships between classes in. But it’s difficult to see how that would work, or how it would avoid degenerating into all the lousy CASE tools that already litter architects desks.

Ideally writing code would be more like reading code. We would be able to describe relationships natively, at a higher level than naming methods and classes. But what does that even mean?! How can I describe a set of classes without scribbling boxes and arrows? And more importantly, how do I make that a part of the implementation language so it never gets out of sync?